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Originally dated June, 2018. The following was an accompanying docu-
ment to my vapor compression refrigeration cycle simulation codes which I
developed while I was a master’s student at the University of New Hamp-
shire in the laboratory of Prof. Chris White. In our case the evaluation of
thermodynamic properties of subcooled coolant, R-134a, was not available
from the proprietor’s data. Therefore, the available data had to be extrap-
olated into the subcooled phase. This is accomplished by a simple exercise
in differential thermodynamics. This document is merely an enumeration
of evaluations solving for one thermodynamic property as a function of two
others. This is all applicable assuming you have tabulations of the prop-
erties of the substance in question in the saturated liquid phase, including
specific heat. I include this here as a free resource. It is easily transferable
for anyone needing to develop quick and easy models of a pure subcooled
substance as part of a subroutine of a larger model.
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1 Introduction

We make use of a number of simple laws and assumptions to get these
results, and try our best to quantify errors where appropriate. Essentially
we take information about the substance in its saturated liquid state, employ
differential thermodynamic relations, and integrate on a clever process to
get an explicit formulation in the subcooled region. The results here are
not a complete closure of the thermodynamic state-space. Table 1 should
elucidate what is knowable in this framework and what is not.
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Table 1: given an input state of two distinct properties, ® indicates that all
other properties are known explicitly, otherwise this is not the case

As is the standard axiom, if at least two thermodynamic properties are
fixed, it defines a state, and all other properties are fixed in that state.
In principle this means all thermal properties are functions of two other
properties. We further remark that we assume the liquid is incompressible
to make these calculations, and therefore v and P are coupled, and do
not constitute independent properties, which makes them an invalid input
pairing.

The bulk of the work is in the following section for temperature and
pressure inputs. Subsequent sections rely on first deriving a way to get tem-
perature and/or pressure, thereby reducing the calculation of the remaining
state variables to an already solved problem.

2 Given Tempurature and Pressure

2.1 Evaluate volume

Firstly we begin with a hard assumption of incompressibility. When you
have been given pressure, simply use the saturation value for specific volume

(v=1)
v=vf(P)+ e (1)

Where ¢, is an error term associated with our assumption of incompress-
ibility. We will try our best not to forget about the epsilons as we go.



2.2 Evaluate enthalpy and energy

Given Temperature and Pressure it should be possible to easily evaluate u
and h by integrating a constant pressure process. Simply begin at Ty, and
integrate to 1. The error associated with this calculation comes from the
assumption that the heat capacity is constant with respect to temperature.
To factor this in, lets merely use the first term of the Taylor series appx.
and let the error be a linear function of temperature.

¢p(T, P) = cp(Tsat, P) +a1(Tsat, P)# (T — Tsar) +a2(Tsat, P) % (T — Tsar)* + ...
then recast with an epsilon and drop the higher order terms

ep(T, P) = cp(P) + €c(T — Tuar) + O((T — Tsar)?)

T
h=ty(P)+ [ [P)+ T~ Tur(P)]aT 2
Tsat(P)
The constants are shown with explicit dependence on pressure merely as
a reminder that you do still need two properties to determine the state.

h=hy(P) + ¢(P)(T = Toar(P) + 5(T = Toar(P))? 3)

This approximation is fine if €. is truly small; it depends on what you’re
calculating and what you consider ”close enough”.

Now to capture the internal energy u, we need only look to our as-
sumption of incompressibility when we integrate the differential expression
defining enthalpy on a constant pressure process (this way, the term vdP

integrates to zero).
Au = Ah — PAv (4)

due to incompressibility this becomes
Au = Ah — Pe,

So we do have error scaling linearly with pressure in addition to the error
associated with AT. but for subcooled liquids Au = Ah is almost always
assumed no matter what; therefore, we discard it. Here’s the full explicit
formulation with the relevant error terms included.

u=us(P) + cp(P)(T — Toat) + Z—C(T — Tyut)® — Pe, (5)

All of this assuming you have a functional relationship for ¢,(P). If,
like me, you like to live on the edge and only have one value for the heat
capacity for all cases then you are essentially letting god decide the outcome
behind your back, since specific heat capacity can sometimes vary strongly
with temperature and pressure.



2.3 Evaluate Entropy

now we must achieve an expression for entropy. We simply integrate the
second law of thermodynamics on a reversible constant pressure process.

oq
T

We know that a heat transfer process over a zero temperature difference
is completely reversible, so assign the temperature in the denominator to
be the current temperature of the substance. Now, since the process is also
constant pressure we know dg = dh so introduce the relationship we derived
from the previous section and differentiate it.

As =

dh = cp(P)dT + €.(T — Tsqt)dT

We arrive at the following.

T C T € — t
s — Sf<P) :/ p(P)dt +/ c(t Tsa (P))dt (6)

Tsat(P) t Tsat (P) t

integrate to find

T T
=s¢(P P)l —_— (T —Tsat (P Tsat(P) 1 —_—
s = sy (Prep(P)og (7 ) e T= TP +ecTuan P 1og (7 )
(7)
With two error terms scaling linearly with AT and T4 log (%(P)) re-

spectively

3 Given Temperature and Specific Volume
This is easy. Use the incompressibility assumption
V=0f+ €

and then use the saturated tables to get pressure.

P = f(vf)+ep
We now have temperature and pressure. Simply follow the previous section
to get any property.
4 Given Pressure and a ”py”-suffixed property

For brevity we say ”’py’-suffixed property” for either energy, enthalpy, or
entropy (Yes, I know you don’t say ”Enerpy”). It is natural to lump these
into one section, as the methods for dealing with them are quite similar.



It would be easy enough to simply invert the relationships from the
section on temperature and pressure (section 2). There are, however, some
faster tricks. The following section will be more terse than the previous,
since by now you seem to be catching on to the process.

4.1 Evaluate Specific Volume

As before, regardless of what property is supplied alongside pressure, the
specific volume is immediately available due to our assumption of incom-
pressibility.

v=v¢(P) + &

4.2 Evaluate Temperature

No bones about it, simply invert the relationships derived in section 2. For
completeness the explicit formulations are given here

when u is given (¢, may be used for u calculations because of incom-
pressibility)
u—uf(P)

T="T,
sat cp(P)

(8)
when h is given, it is straightforward

h — h¢(P)
cp(P)

when s is given (Remember, these must be done in Kelvin)

T = Tyt exp (‘W) (10)

T = Tsat +

4.3 Converting Energy to Enthalpy

Given energy or enthalpy, you may easily get one from the other. wv is
immediately available via incompressibility. then simply use the definition
of enthalpy.

u = h — Pv + Pe, (11)

h =u+ Pv+ Pe, (12)

Errors here scale linearly with pressure.

4.4 Evaluate Entropy given either Enthalpy or Energy

This is induced from the s(7") and T'(h) relations in the previous sections.
We may express the temperature as either

1
T = Tour + ——(u—
sat"’ Cp(P) (U Uf)
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or

1
T =Tt + ——(h—hy)
cp(P) /

Then entropy is given explicitly as follows.

L (u—up) + Toar
s = cp(P)log (cP(P) d ) + s (13)
Tsat
—L(h = hy) + Tsat
s = ¢p(P)log (CP(P) T d ) + s (14)
sat

5 Appendix

5.1 A note on the exclusion of the case where temperature
and ”py”-suffixed properties are the givens

If one took temperature and either energy, enthalpy, or entropy you could
attempt to invert the relationships in section 2 to find pressure, but there are
complications due to the unspecified specific heat function. These formula-
tions are not explicit, and given that ¢,(P) and Tyq(P) are determined by
table-lookup, and may be treated programmatically as nonlinear functions,
some kind of numerical solver would be employed to squeeze out a pressure
value.

Therefore, in the interest of keeping this article ”easy to use” we exclude
these cases and leave them as an exercise for the reader.



5.2 Specific Heats of Saturated Liquids

Tear [K]  Poar [kPa] ¢, [£2%]

kgK
230 42.25 1.249
240 72.73 1.267
250 115.7 1.287
260 176.8 1.308
270 260.5 1.333
280 372.9 1.361
290 518.6 1.393
300 703.1 1.432
310 933.7 1.481
320 1217 1.543
330 1560 1.627
340 1972 1.751
350 2462 1.961
360 3042 2.437
370 3743 5.105

Table 2: Specific Heats of Saturated Liquid R-134a. src: Incropera ”Funda-
mentals of Heat and Mass Transfer”



